# Rapidity gaps in Heavy Ions Collisions at RHIC and the LHC

- Features of Heavy Ion collisions
- forward detectors at RHIC and LHC
- Ultra-Peripheral Collisions
- ATLAS plans





S.White, small-x Workshop 9/19/3



### Models



#### Tag probability high in Heavy Ion events

| Cross section                                                                                          | STAR (mb)                                       | Ref. [5] (mb) |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------|
| $\sigma_{xn,xn}^{\rho}$                                                                                | $28.3 \pm 2.0 \pm 6.3$<br>$2.8 \pm 0.5 \pm 0.7$ | 27<br>2.6     |
| $\sigma_{1n,1n}^{ ho}$ $\sigma_{xn,xn}^{ ho  (inc.  overlap)}$ $\sigma_{xn,xn}^{ ho  (inc.  overlap)}$ | $39.7 \pm 2.8 \pm 9.7$                          |               |
| $\sigma^{ ho}_{xn,0n} \ \sigma^{ ho}_{0n,0n}$                                                          | $95 \pm 60 \pm 25$<br>$370 \pm 170 \pm 80$      |               |
| $\sigma_{ m total}^{ ho}$                                                                              | $460 \pm 220 \pm 110$                           | 350           |

STAR, fraction as expected from factorization cp. RHIC MCD paper

Beam fragmentation Un-correlated in tags from Coulomb interactions



## Orientation of reaction plane and Centrality are key observables in Recent papers from RHIC



(Calorimeter@ $\square$ <2mr.)

b direction from BBC (3<□<4 hodoscope array)



Beam-Beam Counter Mult/1000

#### Evidence for Jet Suppression at RHIC(PHENIX)



... and disappearance of "away side" jet(STAR)



Scaling of elliptic flow (meson vs. baryon)

#### $dn/d\Box \sim 1 + 2 v_2 \cos (2 \Box)$



#### **AA** cross-normalization with pp

- 1) From pp comparison data
  - Error from AA &pp Luminosity uncertainties and neollision
- 2) From central/peripheral
  - Error from determination of centrality classes



<- Klaus Reygers,
PHENIX internal note 7/01

## PHENIX forward cals in '03



DX magnet and layout similar to TAN

Z --> (2.7 TeV/0.1 TeV) \*Z

 $>X,Y -->(\sim 1)*X,Y$ 



- >ZDC in all experiments since day-1
- ➤ PHENIX has ZDC shower max@2\*□<sub>1</sub>
- " "FCAL for d-Au run





# FCAL complements ZCAL centrality measurement



Run 3, d-Au data

single proton in FCAL (n-Au events)

single neutron in ZDC (p-Au events)





Strong correlation on Au-side

#### (Absolute Luminosity in Heavy Ion mode to <5%)

#### Calculated cross sections for <a href="PbPb@LHC">PbPb@LHC</a>

A.J.Baltz, C.Chasman and SNW NIM A417(1998)p.1

| $\square_{1n,1n}$       | 0.537 barns |
|-------------------------|-------------|
| $\square_{1n,xn}$       | 1.897       |
| $\square_{xn,xn}$       | 14.75       |
| $\square_{\mathrm{xn}}$ | 227.3       |

#### 2) Machine based

$$L = \frac{3f_{rev} \prod N_b N^2}{2}$$

$$N_b = 56; N = 1 \square 10^9;$$

 $\square = 15$  to  $40\square m$ m;

$$\int_{0}^{\infty} = 1 \prod 10m$$

Van derMeer scans to measure 

| \* (at PHENIX)



...and Shower Max Detector ->independent measurement of displacement and crossing angle



#### **Implementation in ATLAS**



LARP proposed luminometer
4 quadrant High Pressure ionization
Chamber, occupies ~15 cm of TAN
Absorber slot

Asymmetries used to Measure beam steering



#### IP1&IP5 absorbers



#### Exploded view

TAN@140m



#### **Electromagnetic Interactions of Heavy Ions:**

- ('24)-E.Fermi develops Equivalent □approx for int of e<sup>-</sup> and □'s with atoms
- ('33) -Weiszacker and Williams
- (50's) demonstration of EPA with interactions of ~500 MeV e with Nuclei-(Wilson, Panofsky et al. @ Stanford)
- (80-90's) -first measurement of EM interaction using ion beams @Bevalac SPS and AGS
- ('03->)- "rapidity gap" physics w. Heavy Ions @ RHIC & LHC



#### ☐☐ and DPE exchange roles in pp and PbPb

 $Z^{2}(or Z^{4}) vs. A^{0.3} *B^{0.3}$ 

2 GeV/ $c^2$ , c = 0.90, 0.95 and 0.97. The single diffraction photon-pomeron

cross section is given for  $M_{\gamma \mathbb{P}} > 2 \text{ GeV/c}^2$  and c = 0.95



Fig. 9. As Fig. 4 but for heavy ion reactions Pb-Pb



Low mass Higgs production cross section= $flux*(\Box\Box>H^0)$ 

☐☐☐Luminosities based on LHC design parameters

E.Papageorgiu hep-ph/9503372



#### Fixed target $\square$ beam w. $E_{\square} > 100 \text{TeV}$

## qq photoproduction in the Color Glass Model

test parton distribution (saturation scale  $Q_s$ )

1) average number of qq pairs [Gelis, Peshier, hep-ph/0107142]





AuAu,  $\gamma=3000$ ,  $Q_s=2\,{\rm GeV}$  ( $k_t$ : transv. momentum of the pair)

distinct peak in spectrum:  $k_{\scriptscriptstyle f}^{\rm max} pprox Q_{\scriptscriptstyle S}$  (for heavy flavors)

## Heavy Ion Physics ca. 2008

Heavy Ion Physics= Opportunities with a tool that we are just learning

to exploit

(c.f. e<sup>+</sup>e<sup>-</sup> physics)

LHC energy scale



Impact parameter vs ZDC energy



### summary

- Beam tagging is a feature of the RHIC Heavy Ion programme
- Similar Instrumentation will be available at LHC
- Increase in energy at LHC significant
  - Hard processes in peripheral events
  - Will complement the pp forward physics program